Estimation of PAHs dry deposition and BaP toxic equivalency factors (TEFs) study at Urban, Industry Park and rural sampling sites in central Taiwan, Taichung.

نویسندگان

  • Guor-Cheng Fang
  • Kuan-Foo Chang
  • Chungsying Lu
  • Hsunling Bai
چکیده

The concentrations of polycyclic aromatic hydrocarbons (PAHs) in gas phase and particle bound were measured simultaneously at industrial (INDUSTRY), urban (URBAN), and rural areas (RURAL) in Taichung, Taiwan. And the PAH concentrations, size distributions, estimated PAHs dry deposition fluxes and health risk study of PAHs in the ambient air of central Taiwan were discussed in this study. Total PAH concentrations at INDUSTRY, URBAN, and RURAL sampling sites were found to be 1650 +/- 1240, 1220 +/- 520, and 831 +/- 427 ng/m3, respectively. The results indicated that PAH concentrations were higher at INDUSTRY and URBAN sampling sites than the RURAL sampling sites because of the more industrial processes, traffic exhausts and human activities. The estimation dry deposition and size distribution of PAHs were also studied. The results indicated that the estimated dry deposition fluxes of total PAHs were 58.5, 48.8, and 38.6 microg/m2/day at INDUSTRY, URBAN, and RURAL, respectively. The BaP equivalency results indicated that the health risk of gas phase PAHs were higher than the particle phase at three sampling sites of central Taiwan. However, compared with the BaP equivalency results to other studies conducted in factory, this study indicated the health risk of PAHs was acceptable in the ambient air of central Taiwan.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toxic equivalency factors study of polycyclic aromatic hydrocarbons (PAHs) in Taichung City, Taiwan.

Airborne particles and polycyclic aromatic hydrocarbons (PAHs) in industrial, background and urban atmosphere environments were investigated using toxic equivalent factors (TEFs) in central Taiwan during the period of August-December 2002. Concentrations of airborne particles were 93.4, 81.3 and 102.4 microg/m3 for industrial, background and urban sites, respectively. Concentrations of 21 gaseo...

متن کامل

Apply Woods Model in the Predictions of Ambient Air Particles and Metallic Elements (Mn, Fe, Zn, Cr, and Cu) at Industrial, Suburban/Coastal, and Residential Sampling Sites

The main purpose for this study was to monitor ambient air particles and metallic elements (Mn, Fe, Zn, Cr, and Cu) in total suspended particulates (TSPs) concentration, dry deposition at three characteristic sampling sites of central Taiwan. Additionally, the calculated/measured dry deposition flux ratios of ambient air particles and metallic elements were calculated with Woods models at these...

متن کامل

Characterization and Source Identification of PM10-bound Polycyclic Aromatic Hydrocarbons in Urban Air of Tianjin, China

PM10 samples were collected at six sampling sites in city center of Tianjin from April 2008 to January 2009. The concentrations of 17 selected polycyclic aromatic hydrocarbons (PAHs) in PM10 were quantified. Spatial and seasonal variations of PAHs were characterized. The dominant PAHs in PM10 samples were fluoranthene, pyrene, benz[a] anthracene, phenanthrene, chrysene, benzo[b]fluoranthene, an...

متن کامل

Comparative potency approach based on H2AX assay for estimating the genotoxicity of polycyclic aromatic hydrocarbons.

Polycyclic Aromatic Hydrocarbons (PAHs) constitute a family of over one hundred compounds and can generally be found in complex mixtures. PAHs metabolites cause DNA damage which can lead to the development of carcinogenesis. Toxicity assessment of PAH complex mixtures is currently expressed in terms of toxic equivalents, based on Toxicity Equivalent Factors (TEFs). However, the definition of ne...

متن کامل

Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity?

Estimation of carcinogenic potency based on analysis of 16 polycyclic aromatic hydrocarbons (PAHs) ranked by U.S. Environmental Protection Agency (EPA) is the most popular approach within scientific and environmental air quality management communities. The majority of PAH monitoring projects have been focused on particle-bound PAHs, ignoring the contribution of gas-phase PAHs to the toxicity of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemosphere

دوره 55 6  شماره 

صفحات  -

تاریخ انتشار 2004